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A Contact Process with a Single Inhomogeneous Site 
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The one-dimensional basic contact process is a Markov process for which 
particles give birth on vacant nearest neighbor sites at rate 2 > 0 and particles 
die at rate one. We introduce a one-dimensional contact process with a single 
inhomogeneous site: the evolution is as above except that a particle located at 

the origin does not  die. Let 2,. be the critical value of the basic contact process. 
We show that for 2 # 2,. the upper invariant measures of the inhomogeneous 
contact process and the basic contact process coincide except at a finite number  
of  sites. The behavior at 2 = 2,. is much more interesting: the upper invariant 
measure of the inhomogeneous contact process concentrates on configurations 
with infinitely many  particles, while it is known that the critical basic contact 
process dies out. So a single inhomogeneity may provoke a perturbation 
unbounded  in space. As a byproduct of  our analysis we prove that the connec- 
tivity probabilities of  the critical basic contact process are not  summable.  We 
also give a biological interpretation of this model. 
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1. I N T R O D U C T I O N  

We consider the one-dimensional  contact  process ~, which is a Markov  
process with state space {0, 1} z. For  any integer x, ~,(x)= 1 means that  
the site x is occupied by a particle at t ime t and ~,(x)= 0 means that  the 
site x is vacant  at t ime t. The  contact  process evolves according to the 
following rules: 

(i) If ~ ( x )  = 1, then 

lim Ip(~t+.~.(x)=0 I ~,) = 1 
s ~ O S  
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(ii) If ~,(x) = 0, then 

lim 1-P(~,+.,.(x) =0  I ~ , )= 2 (~ , (x -  1)+ ~,(x + 1)) 
s ~ O  S 

Here 2 > 0  is a parameter. We denote by ~ the contact process whose 
initial configuration has one particle on each site of A c Z and no particles 
elsewhere. 

The contact process is an attractive process and this implies that if we 
start the process with all sites in Z occupied by a particle, the law of the 
process converges to the upper invariant measure #;. which is the largest 
possible invariant measure. For  this and other basic facts about the contact 
process see Liggett 18~ and DurrettJ 4~ Another obvious invariant measure 
for the contact process is ~0 the Dirac measure concentrated on the empty 
configuration. There exists a critical value 2~ such that if 2 ~< 2,, then the 
upper invariant measure #x = go and if 2 > 2c,/z;. # ~0 and #~. concentrates 
on configurations with infinitely many particles, t~ 

We now introduce a contact process 4, with a single inhomogeneous 
site. The birth and death rates follow (i) and (ii) for this process, too, 
except that at the origin a particle cannot die. So for 4, the death rate 
[appearing in (i)] is 1 at all sites but the origin, where it is 0. The process 
~, is still attractive and if we start with all sites occupied by a particle it 
converges in law to the upper invariant measure that we denote flA. We will 
see below that we may construct ~, and ( ,  simultaneously in such a way 
that if ~0~<(0 [i.e., ~o(X) ~<(o(X) for all x in Z] ,  then ~,~<~, at all times 
t/> 0. This implies that for a fixed 2, #~. ~ fi). (i.e., ~ fdlx~ <~ ~ f  dfi~ for every 
increasing function f defined on the set of configurations). This is known 
to imply (see Liggett, ~s~ Theorem2.4, Chapter lI) the existence of a 
measure v). whose first marginal is/2)., whose second marginal is fi)., and 
such that 

v).((~, ~): ~ < ~ ) =  1 

T h e o r e m  1. (a) If 2#2 , . ,  then the upper invariant measures ll~, 
and fi~ of the contact process and of the inhomogeneous contact process 
coincide except for a finite number of sites. That is, 

v~((~, 4): 0~< ~ (~(x)--~(x)) < ~ )  = 1 
x ~ Z  

(b) If 2 = 2c, then fix, concentrates on configurations with infinitely 
many particles, while it is known that It;.,. = go. 
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So Theorem 1 shows that if 2 :~ 2~, then a single inhomogeneity causes 
a finite perturbation in space. What is more interesting is that if 2 = 2,., 
then a single inhomogeneity causes a perturbation which is not bounded in 
space. The proof of part (a) of Theorem 1 is almost immediate. The proof 
of part (b) is based on a coupling in Cox et aL ~3~ which follows ideas in 
Galves and PresuttiJ 51 These methods are heavily one-dimensional and we 
do not know what to expect for the corresponding problem in higher 
dimensions. 

An easy consequence of Theorem l(b) is the following result. 

Corollary 1. If 2 = 2 c ,  then the connectivity probabilities are not 
summable. That is, 

P(3t ~> 0: ~~ 1)=  ov 
x E Z  

In particular, if P(3t~>0: ~~  1) behaves like a power law Ixl -k, 
the corollary shows that k ~< 1. 

Bezuidenhout and Grimmett ~2~ have proved that the connectivity 
probabilities decay exponentially fast if ;t < 2 c in any dimension. 

To complete the picture of the contact process with a single 
inhomogeneous site, we state next a complete convergence theorem. 

Theorem 2. For any 2 > 0 and any initial configuration 4o we have 
that 

4, converges in law to P(a = ~ ) ~ o  + P(a < ~ )  12~ 

where a = i n f { t  ~>0: 41(0)= 1}. 

There has been some interest in the mathematical biology literature 
in heterogeneous models of the type we introduce here. ~m For  instance, 
the core and satellite hypothesis in metapopulation dynamics predicts 
that either most species are present in most patches or occupy only a 
small fraction of the patches, tT~ If we think of the origin as the mainland 
and the othe~ sites as being islands, we see by Theorem l(a) that the 
inhomogeneous contact process is consistent with the core and satellite 
hypothesis: if 2 < 2,, then the upper invariant measure concentrates on 
finite configurations, while if 2 > 2,., the upper invariant measure concen- 
trates on infinite configurations. Of course, the sharp transition happens for 
the basic contact process as well and we use the inhomogeneous site only 
to avoid extinction. 
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2. PROOFS OF T H E O R E M  1 A N D  C O R O L L A R Y  1 

We begin by recalling Harris' graphical construction of the contact 
process (for more details see Durrett~4~). We associate each site of Z with 
three independent Poisson processes, one with rate 1 and the two others 
with rate 2. Make these Poisson processes independent from site to site. 
For  each x, let { Tx'k: n >~ 1 }, k = 0, 1, 2, be the arrival times of these three 
processes, respectively; the process {T~,"~ n>~ 1} has rate 1, the others 
rate 2. For  each x and n >1 1 we write a fi mark at the point (x, ,,- 0 T;;" ). We 
draw an arrow from (x, x.l T ,  ) to ( x +  1, T~'~). We also draw an arrow from 
(X~ x 2 x 2 T, '  ) to ( x -  1, T," ). We say that there is a path from (x, s) to (y, t) 
if there is a sequence of times So = s < s~ < s2 < ... < s, < s, + ~ = t and spa- 
tial locations Xo=X,  X l , . . . , x , = y  so that for i =  1, 2,..., n there is an arrow 
from x~_~ to Xg at time si and the vertical segments {x~} x ( s ,  s~+,) for 
i =  0, 1 ..... n do not contain any 6. We use the notation {(x, s) --* (y, t)} to 
denote the event that there is path from (x, s) to (y, t). To construct the 
contact process ~, from the initial configuration A (i.e., there is one particle 
at each site of A) we let ~f f (y)= I if there is a path from (x, 0) to (y, t) for 
some x in A. We use the same Poisson marks to construct ( ,  except that 
for this process we ignore the J marks located on {0} x [0, oo). Using this 
graphical construction, it is clear that for a fixed 2 > 0 ,  ~, and ~, are 
coupled in such a way that if G0 ~< (0, then at all times t we have ~, ~< (,.  
We need to state a few more properties before turning to the proofs. We 
define the survival time of a process starting with a single particle located 
at x by 

 X=inf{/>0:  X,y,=0 t 
y ~ Z  

f X = i n f { t > 0 :  ~ ( ~ ( y ) = 0 }  
y ~ Z  

We also define the densities of p~. and/Y;, by 

p~.(x) = ~ ( ~  e {0, 1}z: ~(x)= 1) 

~.(x) =/i;.(~ e {0, 1}z: ~ (z )=  1) 

Since the transition rates of ~, are translation invariant and p~ is obtained 
starting from a translation-invariant initial configuration,/z;, is translation 
invariant and p;.(x) is a constant that we denote by pa. 



Contact Process with Single Inhomogeneous Site 771 

The contact  process is said to be self-dual in the sense that  for any 
subsets A and B included in Z, we have 

The inhomogeneous  contact  process is also self-dual. For  more  details see 
Durret t /4)  

By self-duality of  the contact  process we have 

P(~Z(x) -- 1) -- P ( f "  > t) 

and letting t go to infinity, we get 

~ ( x )  =/i~.(~ e {0, 1}z: ~(x)=  1)= P(e-" = co) 

We can now turn to the p roo f  of  Theorem 1. 

Proof of Theorem l(a). Define 

a"=inf{t>>.O: ~7(0 )=  1} 

We have 

/Y).(x) = P ( a "  < co; f " =  co) + P(aX = co; f x =  co) 

N o w  observe that  if a"  = co, then ' zx ~, = ~ ,  for all t and since P ( r " =  c o ) = 0  
if 2 ~< 2c, we get 

~).(x)=P(a"<co;fx=co) for 2-N<2c (2.1) 

Pick a > 0 such that  a2 < 1 and observe that  the r ightmost  and leftmost 
particles of  a contact  process are domina ted  by Poisson processes with rate 
2. Therefore there are C and y > 0 such that  for all x in Z 

P(cr" < a Ixl) ~< P(3s  <<. a Ixl: ~2.(0) -- 1 ) ~< Ce-Y u.,l 

We now take care of  times larger than a Ixh 

P(co > a X > a  Ixl)~< e ( r "  > a Ixl) 

If  2 < 2~, then there are Cn and ~ strictly positive such that  for all x 

P(z  x > a Ixl) = e ( r  ~ > a Ixl) ~< C, e-r~ t.,-I 
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So for all 2 < 2,. we have C2 and Y2 such that  for all x 

#~,( x )  <~ C2e - y'- t.,l 

Since the density p~, is zero for 2 < 2,,  we have 

/~).(x) =/~).(x) - pa(x )  = va((4, 4): {(x) = 1; ~(x) = 0) ~< C z e  -~"-I.,1 

By the Borel-Cantell i  Lemma and the preceding estimate we get 
Theorem l(a)  for 2 < 2,.. 

We now turn to the supercritical case. Fix 2 > 2,.; we have 

0 ~< r = P ( f "  = co; r " <  co) 

where the inequality comes from the fact that  the inhomogeneous  contact  
process dominates  the contact  process and the equality comes from self- 
duality. We have 

0 <~ ~6~,(x) --  p~, = P(a"- < co; U = co; r" < co ) 

+ P ( a " =  co; f " =  co; r"-< co) 

But if a"  = co, then 47 = 4 ,  for all t/> 0 and therefore the second term on 
the r.h.s, must  be zero. So 

0 ~<ffa(x) - pa = P ( a "  < co; f " =  co; r " <  co) 

Pick a > 0 again such that a2 < 1 and as explained above we get 

P ( a "  < a Ixl) ~ P(3s  <~ a Ixl: ~-~(0) = 1 ) ~< Ce - r  I-,-I 

On  the other  hand, 

e (co  > w" > a Ixl; f " =  co; r " <  c o ) ~ P ( a  Ix[ < r" < co)~< C3 e-r3 [xl 

where the exponential  decay was proved by Durret t  and Griffeath (see 
Liggett ~81) for 2 > 2 c .  So we get that  there are constants  C4 and Y4 such 
that for all x 

0 ~ ~ . ( x )  - p~. <~ C4e -~'~ t.,l 

Here again the Borel-Cantell i  Lemma completes the p roof  of  Theorem l(a)  
when 2>2 , . .  I 

P r o o f  o f  T h e o r e m  7(b) .  In this p roof  we fix 2 = 2c and we introduce 
a renewal process that  we will compare  to the inhomogeneous  contact  
process. We define ~o..,. to be the contact  process starting at time s ~ t with 
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a single particle located at the origin. To construct this process we use the 
same Poisson marks as for ~, starting at time s. We define To--0 and for 
k>~l 

Tk=inf{t>Tk_," ~ ~o'rk-'(x)=O t 
. x ' E Z  

Let the number of renewals up to time t be 

N( t )=  ~ l{r,~,} 
i = l  

We construct the process ~o. r,v,, using the same graphical construction as 
for the contact process. At time 0 we start ~0. r~,, with a single particle 
located at the origin and each time this process dies out (which happens 
with probability one) we restart it putting a particle at the origin. The 
crucial observation in what follows is that if the initial configuration of the 
inhomogeneous contact process ~o is such that (o(0)= l, then we have 
the following coupling at all times t: 

r ru,,, ~< ~, (2.2) 

Observe that the sequence ( T ~ - T i _ t ) ~  ~ is i.i.d, and the distribution 
of T~ is the same as that of r ~ Moreover, Durrett 14~ has proved that if 
2 = 2,, then 

lim x/~ P(r ~ > t) = 
t ~ o ~  

In particular, r ~ has infinite expectation. Cox et al. c3~ used this to prove the 
following result. 

I . e m m a  2.1. For any integer L there exists a sequence of integers j,, 
going to infinity such that 

lim P(" 3-" ~x0'T"J,'(X)~<L'~=0 J 

For a proof see Lemma 2 in ref. 3. We have 

\ . x "  E Z 
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where the equality comes from the stationarity of fi;.c and the inequality 
comes from the coupling (2.2). We may use this coupling since it is clear 
that the upper invariant measure of the inhomogeneous contact process 
has the property 

~7~c(~: ~ ( 0 )  = 1 ) = 1 

Letting first j,, go to infinity and using Lemma 2.1 and then letting L go 
to infinity in (2.3), we get 

fi;.c(~: ~ ~ ( x ) < ~ )  = 0  
x ~ Z  

and this proves Thorem l(b). | 

Proof  o f  CorollarF 7. By (2.1) we have that 

fi,~c(x) <~ P(a"  < oo ) 

If the series ~ , , . ~ z P ( a ~ < a z )  were finite, so would be the series 
Z.,.~z fi;.,.(x). But this would imply by Borel-Cantelli that fi;,c concentrates 
on configurations with a finite number of particles, contradicting Theorem 
l(b). Therefore 

P(a"  < oo) = oo for 2 = 2 c  
x ~ Z  

This proves Corollary 1. I 

3. P R O O F  OF T H E O R E M  2 

The case 2 < 2,. is easy to deal with. We have two recurrent classes for 
4,: one consisting of the empty state and the other 

#: Z ((x) < oo; ((0) = 1} 
x c : Z  

The upper invariant measure concentrates on the preceding class, which is 
countable. By elementary properties of Markov chains on countable spaces 
there is a unique invariant measure concentrating on each recurrent class. 
The complete convergence theorem follows for 2 < 2c. 

We now turn to the case 2~>2c. We start by showing that the 
convergence in Lemma 2.1 holds more generally, that is, 

,am  ora, (3.,) 
t ~ o ~  \ x ~ Z  
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We have 

P ( ..~z C~ ru"~( x ) <-- L ) <-- P( t - T~c~tl < J,,) 

+ P(  ~ C~ t-- T~,,,>j,,) 
x E Z  

We will now need the following coupling. Assume that A is a nonempty 
subset of Z; then we may construct C ~ and C, A in the same probability space 
in such a way that at all times t, C A has more particles than 4 ~ For  such 
a coupling see in Liggett ~*1 the proof  of Theorem 1.9(c) in Chapter VI. 

Observe now that if t--Tur then the last time the renewal 
process died out was at least j, units time before t. By the preceding 
coupling if we start a renewal process a t  time t - j ,  with a single particle, 
it should have fewer particles than 4 ~ ru,~ at time t since the latter process 
had at least one particle at time t - j , .  Therefore by the Markov  property 

P (,.~z ~~ rN"3(x) <~ L; t-- Tuo) > J,,) 

<~P( ~ g~ 
" x  ~ Z ~ j "  "" /I 

So 

Since the time between two renewals has infinite expectation, we have that 
t -  T~vl,~ converges in probabili ty to oe as t goes to infinity and so 

lim P(t-  TN.~<j,,)-=--O 
t ~ c t 5  

We first let t go to infinity, then n go to infinity, and use Lemma 2.1 in 
(3.2) to get (3.1). 

Let A be a finite subset of Z and define the set of configurations 

eft= {~: C(x)=  1 for all xeA} 
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Let Go be any fixed initial configuration for the inhomogeneous contact 
process and recall that 

We have that 

a = i n f { t  ~> O: ~,(0)= 1} 

P(~, cr Go; ~ , c ~ ) + P ( a =  oo; ~ , e ~ )  

But if a = oo, then ~, = 4, for all t >/0 and since the critical contact process 
dies out, we have 

lim P(a= oo; ~ , ~ ) = 0  

For 2 > 2c the above limit is also 0 and the reason this time is that if the 
supercritical contact process survives, it spreads linearly and therefore it 
must reach the origin eventually. 

Consider now 

0 ~ P ( a <  oo; ~ f  e ~ e ) - P ( a <  oo; ~, e ~ e ) - - e ( o <  oo; ~,~ e ~e; ~,r 

Define ~o. T~,).~ to be the renewal contact process starting at the random 
time a with a single particle at the origin. Each time this process dies out 
after time a we restart if with a particle at the origin. Observe that starting 
at a, the three processes ~,, ~z, and ~o. r~m. ~ are goining to coincide on the 
interval [l  7, rT], where r 7 and l 7 are, respectively, the rightmost and 
leftmost particles of the renewal contact process ~o. r^.,,). ,. Let l(A) and r(A) 
be, respectively, the two extremal points of A to be the left and the right. 
By the strong Markov property 

I: P(aeds)(P(r; <r(A)) + P(l~> l(A))) 

+ P(t < a < oo) (3.3) 

By (3.1) and the symmetry of the contact process it is clear that 

lim P(r~'<r(A))= lim P(P,>I(A))=O for all 2>~2c 

So by the dominated convergence theorem the integral in (3.3) converges 
to 0 as t goes to infinity and 

lim ( P ( a <  oo; ~ z ~ ) - P ( a <  oo; ~, ~ oK))=0 
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It is easy to see that the conditional distribution of (z  conditional on 
{a < oo} converges to the upper invariant measure/~ (for a similar com- 
putation see Liggett, c8~ p. 285). This completes the proof of Theorem 2. 1 

Note  Added.  Neal Madras (private communication) has an elemen- 
tary proof of Corollary 1 which holds in any dimension. 
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